Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.14.544834

ABSTRACT

Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. We followed 68 PWH aged 55 and older and 23 age-matched HIV-negative individuals for 48 weeks from the first vaccine dose, after the total of three doses. All PWH were on antiretroviral therapy (cART) and had different immune status, including immune responders (IR), immune non-responders (INR), and PWH with low-level viremia (LLV). We measured total and neutralizing Ab responses to SARS-CoV-2 spike and RBD in sera, total anti-spike Abs in saliva, frequency of anti-RBD/NTD B cells, changes in frequency of anti-spike, HIV gag/nef-specific T cells, and HIV reservoirs in peripheral CD4+ T cells. The resulting datasets were used to create a mathematical model for within-host immunization. Various regimens of BNT162b2, mRNA-1273, and ChAdOx1 vaccines elicited equally strong anti-spike IgG responses in PWH and HIV-negative participants in serum and saliva at all timepoints. These responses had similar kinetics in both cohorts and peaked at 4 weeks post-booster (third dose), while half-lives of plasma IgG also dramatically increased post-booster in both groups. Salivary spike IgA responses were low, especially in INRs. PWH had diminished live virus neutralizing titers after two vaccine doses which were 'rescued' after a booster. Anti-spike T cell immunity was enhanced in IRs even in comparison to HIV-negative participants, suggesting Th1 imprinting from HIV, while in INRs it was the lowest. Increased frequency of viral 'blips' in PWH were seen post-vaccination, but vaccines did not affect the size of the intact HIV reservoir in CD4+ T cells in most PWH, except in LLVs. Thus, older PWH require three doses of COVID-19 vaccine to maximize neutralizing responses against SARS-CoV-2, although vaccines may increase HIV reservoirs in PWH with persistent viremia.


Subject(s)
HIV Infections , Severe Acute Respiratory Syndrome , COVID-19 , Viremia
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.18.476864

ABSTRACT

Cellular-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 SARS-CoV-2-infected survivors over a one year post symptom onset (PSO) interval by ex vivo cytokine ELISpot assay. All subjects demonstrated SARS-CoV-2-specific IFN-{gamma}, IL-2, and Granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (Nucleocapsid, Membrane, Spike) except Envelope, with GzmB > IL-2 > IFN-{gamma}. Mathematical modeling predicted that: 1) cytokine responses peaked at 6 days for IFN-{gamma}, 36 days for IL-2, and 7 days for GzmB, 2) severe illness was associated with reduced IFN-{gamma} and GzmB, but increased IL-2 production rates, 3) males displayed greater production of IFN-{gamma}, whereas females produced more GzmB. Ex vivo responses declined over time with persistence of IL-2 in 86% and of IFN-{gamma} and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modelled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the Nucleocapsid and Membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent.


Subject(s)
Severe Acute Respiratory Syndrome , Virus Diseases
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.06.21261721

ABSTRACT

Prioritizing Ontarios long-term care home (LTCH) residents for vaccination against severe acute respiratory syndrome coronavirus 2 has drastically reduced their disease burden; however, recent LTCH outbreaks of variants of concern (VOCs) have raised questions regarding their immune responses. In 198 residents, mRNA vaccine dose 1 elicited partial spike and receptor binding domain antibody responses, while the second elicited a response at least equivalent to convalescent individuals in most residents. Residents administered mRNA-1273 (Moderna) mounted stronger total and neutralizing antibody responses than those administered BNT162b2 (Pfizer-BioNTech). Two to four weeks after dose 2, residents (n = 119, median age 88) produced 4.8-6.3-fold fewer neutralizing antibodies than staff (n = 78; median age 47) against wild-type (with D614G) pseudotyped lentivirus, and residents administered BNT162b2 produced 3.89-fold fewer neutralizing antibodies than those who received mRNA-1273. These effects were exacerbated upon serum challenge with pseudotyped VOC spike, with up to 7.94-fold reductions in B.1.351 (Beta) neutralization. Cumulatively, weaker vaccine stimulation, age/comorbidities, and the VOC produced an [~]130-fold reduction in apparent neutralization titers in LTCH residents and 37.9% of BNT162b2-vaccinated residents had undetectable neutralizing antibodies to B.1.351. Continued immune response surveillance and additional vaccine doses may be required in this population with known vulnerabilities.


Subject(s)
Coronavirus Infections
5.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-115221.v1

ABSTRACT

To meet the urgent demand for better diagnostic tools to combat the ongoing COVID-19 pandemic, we developed a homogeneous immunoassay to detect IgG antibodies against SARS-CoV-2. This assay is based on a tri-part Nanoluciferase (tNLuc) approach, in which the spike protein of SARS-CoV-2 and protein G, fused respectively to two different tNLuc tags, are used as antibody probes. Target engagement of the probes allows reconstitution of a functional luciferase in the presence of the third tNLuc component. The assay is performed directly in liquid phase of patient sera and enables rapid, quantitative and low-cost detection. We show that tNLuc maintains a similar sensitivity to ELISA, while its readouts are highly consistent with various neutralizing antibody assays. This proof-of-principle study suggests potential applications in diagnostics and disease and vaccination management. 


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.27.20183319

ABSTRACT

There is a pressing need for an in-depth understanding of immunity to SARS-CoV-2. Here we investigated T cell recall responses to fully glycosylated Spike trimer, recombinant N protein as well as to S, N, M and E peptide pools in the early convalescent phase. All subjects showed SARS-CoV-2-specific T cell responses to at least one antigen. SARS-CoV-2-specific CD4+ T cells were primarily of the central memory phenotype and exhibited a lower IFN-[gamma] to TNF-[alpha] ratio compared to influenza-specific responses of the same donors, independent of disease severity. SARS-CoV-2-specific T cells were less multifunctional than influenza-specific T cells, particularly in severe cases, potentially suggesting exhaustion. High IL-10 production was noted in response to N protein, possibly contributing to immunosuppression, with potential implications for vaccine design. We observed granzyme B+/IFN-[gamma] CD4+ and CD8+ proliferative responses to peptide pools in most individuals, with CD4+ responses predominating over CD8+ responses. Peripheral T follicular helper responses to S or N strongly correlated with serum neutralization assays as well as RBD-specific IgA. Overall, T cell responses to SARS-CoV-2 are robust, however, CD4+ Th1 responses predominate over CD8+ responses and are more inflammatory with a weaker Tfh response than influenza-specific CD4+ responses, potentially contributing to COVID-19 disease.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.01.20166553

ABSTRACT

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the mucosal immune response and its relationship to systemic antibody levels. Since SARS-CoV-2 initially replicates in the upper airway, the antibody response in the oral cavity is likely an important parameter that influences the course of infection. We developed enzyme linked immunosorbent assays to detect IgA and IgG antibodies to the SARS-CoV-2 spike protein (full length trimer) and its receptor binding domain (RBD) in serum (n=496) and saliva (n=90) of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Whereas anti-CoV-2 IgA antibodies rapidly decayed, IgG antibodies remained relatively stable up to 115 days PSO in both biofluids. Importantly, IgG responses in saliva and serum were correlated, suggesting that antibodies in the saliva may serve as a surrogate measure of systemic immunity.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL